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These Notes

I Background: SIR Model.

I Local Approximation Using the Jacobian and Spectral
Decomposition.

I This application (SIR model) is non-examinable, but the
methods (finding a Jacobian/eigenvalues...) are.
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Background: SIR Model
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Background: SIR Model - Assumptions

I The population is divided into three compartments.

Susceptible Infectious Recovered
βSt It γIt

I Basic version with no reinfection or removal, in discrete time.

I Classical reference is Kermack and McKendrick (1927), but
also see Robert Shiller’s 2019 Marshall Lectures.

I Transition rates given as βSt It and γIt .

I We will normalise the population such that:

St + It + Rt = 1.
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http://www.econ.cam.ac.uk/Marshall_Lecture/RobertShiller


Background: SIR Model - Key Equations

I The model dynamics may be written as:

St+1 = St − βSt It ,
It+1 = It + βSt It − γIt ,
Rt+1 = Rt + γIt .

I As we have normalised the population, this may be written as
a system of (non-linear) equations:(

St+1

It+1

)
=

(
St − βSt It

It + βSt It − γIt

)
.

I Which is of the form (vector-valued function of a vector):

xt+1 = f (xt),

where xt =

(
St
It

)
.
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Background: SIR Model - Two Important Questions

1. What are the equilibria?

I A stationary system requires:

xt+1 = f (xt) = xt ⇒
(
−βSt It

βSt It − γIt

)
=

(
0
0

)
.

I Two possibilities: heard immunity (St = It = 0,Rt = 1) and
disease free (St = 1, It = Rt = 0).

2. Close to these equilibria, how does the model behave?

I Does the model display explosive dynamics (a pandemic) or
does the disease fade quickly?
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Background: SIR Model - Initial Dynamics

I Law of motion for It+1 tells us the impact of higher infections:

It+1 = βSt It + (1− γ)It ,

∆It+1 = (βSt − γ)It ,

∆It+1 ≈ (β − γ)It .

I The final line assumed we start “close” to the disease free
equilibrium with St ≈ 1.

I Hence if (β − γ) > 0, then It increases over time (pandemic)
and whenever (β − γ) < 0, then It falls (disease fades).
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Background: SIR Model - R0 is a Related Concept

I Much press coverage, see BBC News or the Telegraph.

I Defined as the “average number of secondary infections arising
from a typical infection in an entirely susceptible population.”

I To find R0 note that (on average):

Number of susceptibles infected by one infectious = β,

Time until infectious recoveres = 1/γ.

Contacts by infectious before removed, R0 ≡ β/γ.
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https://www.youtube.com/watch?v=iaOm-eF9p-8
https://www.youtube.com/watch?v=GJZ_Q8RGZWg


Background: SIR Model - Graphical Example

I Whenever R0 > 1, then I increases and an epidemic ensues.

Dynamics of SIR Model

(a) Explosive Dynamics, with R0 > 1. (b) Fades quickly, with R0 < 1.
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Local Approximation Using the Jacobian and
Spectral Decomposition
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Local Approximation: Outline

I We want to know if we are in case (a) or (b).

I We can find out by linearising the system around a given
starting point, say the disease free equilibrium,
x0 =

(
S0 I0

)′
=
(
1 0

)′
.

I Linearise using the Taylor theorem applied to a vector-valued
function of a vector (Hartman–Grobman theorem).

xt+1 = f (xt),

f (xt) ≈ f (x0) +
df (x0)

dx ′
(xt − x0),

where df (x0)
dx ′ is our Jacobian matrix evaluated at xt = x0.
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Local Approximation: The Jacobian Matrix

I Our Jacobian matrix is then given as:

f (xt) =

(
St − βSt It

βSt It + (1− γ)It

)
⇒ df (xt)

dx ′t
=

(
df1
dx1

df1
dx2

df2
dx1

df2
dx2

)
=

(
1− βIt −βSt
βIt βSt + 1− γ

)
.

I Evaluated at x0 this becomes:

df (x0)

dx ′t
=

(
1 −β
0 β + 1− γ

)
.

I Plug in to the approximation and we have:

xt+1 = f (xt) ≈ f (x0) +
df (x0)

dx ′
(xt − x0),

xt+1 ≈ xt +

(
1 −β
0 β + 1− γ

)
(xt − x0).
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Local Approximation: Difference Equations

I Removing x0 from each side, the above may be rewritten:

xt+1 − x0 ≈
(

0 −β
0 β − γ

)
(xt − x0).

I This represents a set of difference equations:

ut+1 = Aut .

I The dynamics are given by the eigenvalues of A.
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Local Approximation: Eigenvalues and Eigenvectors

I Proceed as usual. Ax = λx , with x 6= 0, infers:

det(A− λI ) = det

(
−λ −β
0 β − γ − λ

)
= −λ(β − γ − λ) = 0.

I The eigenvalues are therefore λ1 = 0 and λ2 = β − γ.

I The eigenvectors are therefore v1 =
(
1 0

)′
and

v2 =
(
−β/(β − γ) 1

)′
.

I The diagonalised form of the matrix A = QΛQ−1 is:

A =

(
1 −β/(β − γ)
0 1

)(
0 0
0 β − γ

)(
1 β/(β − γ)
0 1

)
.

I So may quickly compute ut+k+1 = Akut since
Ak = QΛkQ−1.

14 / 18



Final Thought: Why Do We Care So Much?

I The non-zero eigenvalue (and hence R0) provides several
insights into our system dynamics.

1. It gives a threshold for whether there will be an epidemic.

2. It gives the initial rate of increase of an outbreak (whether
explosive or not).

3. It gives the final size of the epidemic (fraction of susceptibles
ultimately infected), see Appendix.
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Appendix
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Appendix: Phase Diagrams

I If R0 > 1, proportion of infected initially grows before falling.

I Linearised solution is a reasonable approximation close to x0.

Phase Diagrams of SIR Model

(a) Explosive Dynamics, with R0 > 1. (b) Linearised solution added in blue.
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Appendix: Does the Epidemic Infect Everyone?
I Recall the basic model equations (now in continuous time):

∂S

∂t
= −βSI , and

∂I

∂t
= βSI − γI .

I Divide these to give:
∂I

∂S
= −1 +

γ

βS
.

I Rearrange as:

∂I =

(
−1 +

γ

βS

)
∂S.

I Integrate:

I (t) = −S(t) +
γ

β
ln[S(t)] + C .

I Initial conditions (“close” to the disease free equilibrium), I (0)→ 0 and S(0)→ 1 give C → 1.

I Finally, taking the limit when I (∞)→ 0, such that the pandemic ends:

[S∞ − 1]
β

γ
= ln[S∞],

[S∞ − 1]R0 = ln[S∞].
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